I M.Tech - I Semester – Regular Examinations - MARCH - 2023

ADVANCED DIGITAL SIGNAL PROCESSING (MICROWAVE & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	What is multirate signal processing?	L2	CO1	8 M				
		Explain any two applications of multirate							
		signal processing.							
	b)	Derive transfer function of a decimator.	L3	CO1	7 M				
		OR							
2	a)	Explain the frequency domain description of	L2	CO1	7 M				
		an Interpolator.							
	b)	A signal $x(n)$ is given by $x(n) =$	L3	CO1	8 M				
		{0,1,2,3,4,5,6,0,1,2,3}							
		(i) Obtain the decimated signal with a							
		factor of 2.							
		(ii) Obtain the interpolated signal with a							
		factor of 2.							

		UNIT-II			
3	a)	Illustrate the process of sampling rate conversion of band pass signals.	L3	CO2	8 M
	b)	Explain Filter characteristics for Subband Coding of Speech Signals.	L2	CO2	7 M
		OR			
4	a)	Explain block diagram of FDM to TDM transmultiplexer.	L2	CO2	8 M
	b)	Illustrate Implementation of Narrowband Low pass Filters.	L3	CO2	7 M
		UNIT-III			
5	a)	Illustrate Schur Algorithm with examples.	L3	CO3	8 M
	b)	Explain the process of backward linear prediction.	L2	CO3	7 M
	1	OR	I	11	
6	a)	Explain Maximum phase property of the forward prediction error filter.	L2	CO3	8 M
	b)	Determine optimum reflection coefficients for the Lattice Forward Predictors.	L3	CO3	7 M
		UNIT-IV			
7	a)	What is the basic principle of parametric methods in power spectral estimation? Discuss various techniques in parametric method.	L2	CO4	7 M
	b)	Illustrate Bartlett method of power spectrum estimation.	L3	CO4	8 M

OR								
8	a)	Obtain the relation between model	L3	CO4	8 M			
		parameters and the Auto Correlation coefficients in AR model spectral estimation.						
	b)	Compare Parametric and Non-Parametric	L4	CO4	7 M			
		methods of spectral estimation.						